Course Outline

Title:C PROGRAMMING, DATA STRUCTURES AND ALGORITHMS

Code: ITECH3218

Formerly: CP707

Faculty / Portfolio: Faculty of Science

Program Level:

	AQF Level of Program						
	5	6	7	8	9	10	
Level	Level						
Introductory							
Intermediate			~				
Advanced							

Pre-requisites: (CP627 or CP689 or ITECH2100)

Co-requisites:	Nil
Exclusions:	(CP707 and CP728 and CP732)
Progress Units:	15
ASCED Code:	020103

Learning Outcomes:

Knowledge:

- K1. explain programming concepts such as recursion
- **K2.** describe common algorithms, such as sorting algorithms, and explain different ways in which they may be used
- K3. describe ways in which to measure the efficiency of an algorithm
- K4. explain various abstract data types and data structures;
- **K5.** explain the C memory model which involves concepts such as the stack, free store and pointers

Skills:

- **S1.** develop C code using a top-down approach;
- S2. write correct C code and involving abstract data structures;
- **S3.** develop program solutions utilising a range of data structures and algorithms
- S4. calculate and compare the efficiency of algorithms

Application of knowledge and skills:

A1. Design, develop, test and debug program solutions given textual, informally written program specifications

Values and Graduate Attributes:

Course Outline

ITECH3218 C PROGRAMMING, DATA STRUCTURES AND ALGORITHMS

Values:

V1. Continue to develop professionalism in the design and implementation of software solutions.

Graduate Attributes:

Attribute	Brief Description	Focus
Continuous Learning	In a blended learning approach facilitated by the use of the C	Medium
	programming language and development environment requiring	
	planning, development and implementation of programs involving	
	abstract data types and algorithms, students will continue to develop	
	their knowledge and skills.	
Self Reliance	Students will participate in a self-directed and collaborative learning	Medium
	environment to develop their theoretical and technical expertise in the	
	field of software development.	
Engaged Citizenship	Students will produce programming solutions which meet industry	Medium
	standards.	
Social Responsibility	Students will use industry standard development environments,	Medium
	programming languages and development techniques to deploy	
	software solutions.	

Content:

Topics may include:

- The C programming language.
- Efficiency of Algorithms, Time and Space Complexity.
- Various versions and implementations of common algorithms.
- Abstract data types and different ways in which they may be implemented.
- Recursion: the basic concepts, various examples throughout the course, when the usage
 of recursive algorithms is natural and efficient.

Assessment:

Learning Outcomes Assessed	Assessment Task	Assessment Type	Weighting
K1, K2, K3, K4, K5, S1, S2,	Practical demonstration of program	Assignments, laboratory tests, projects	40 - 50%
S3, S4, A1	design and report presentation skills	and/or presentations	
K1, K2, K3, K4, K5, S1, S2,	Class attendance and exercises, reading	Examination(s)	50 - 60%
S3, S4, A1	of reference material and lecture notes		

Adopted Reference Style:

APA

Presentation of Academic Work:

https://federation.edu.au/students/assistance-support-and-services/academic-support/general-gui de-for-the-presentation-of-academic-work